Rigidity percolation in dispersions with a structured viscoelastic matrix.

نویسندگان

  • M W L Wilbrink
  • M A J Michels
  • W P Vellinga
  • H E H Meijer
چکیده

This paper deals with rigidity percolation in composite materials consisting of a dispersion of mineral particles in a microstructured viscoelastic matrix. The viscoelastic matrix in this specific case is a hydrocarbon refinery residue. In a set of model random composites the mean interparticle surface-to-surface distance was controlled, changing particle volume fraction phi and particle number density independently. This was achieved by mixing two sets of monodisperse particles with widely differing radii (0.35 microm and 17.5 microm) with the matrix. A scaling exponent of 3.9 +/- 0.6 for the storage modulus G' vs phi- phi(c) was observed above a threshold phi(c) , in good agreement with theoretical values for rigidity percolation. It is found that at the rigidity-percolation threshold the pore structure, as characterized by the mean surface-to-surface distance for the filler, rather than the filler volume fraction, is similar for different types of composites. This behavior is explained from the internal structure of the viscoelastic matrix, which consists of fractal solid aggregates dissolved in a viscous medium; the effective radius of these aggregates and the mean surface-to-surface distance together determine whether or not the aggregates are capable of providing rigidity to the composite. The explanation is further supported by a qualitative comparison with effective-medium calculations. These indicate that the observed breakdown of time-temperature superposition near phi(c) is due to the appearance of a time scale characteristic for the mechanical interplay between the viscous binder phase and the purely elastic solid particles.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The microstructure of petroleum vacuum residue films for bituminous concrete: a microscopy approach.

Selected carbon-rich refinery residues ('binders') mixed with mineral particles can form composite materials ('bituminous concrete') with bulk mechanical properties comparable to those of cement concrete. The microstructural mechanism underlying the remarkable composite properties has been related to the appearance of a rigid percolating network consisting of asphaltenes and mineral particles [...

متن کامل

The Relation between the Permeability of Structured Dispersions and the Viscoelastic Properties of the Dispersed Phase

It is shown that not only the average particle size and compression modulus, but also the viscoelastic properties of the network affect the rate of liquid removal out of a concentrated disperse system that is unilaterally compressed. A Maxwell-like constitutive equation is introduced to express these viscoelastic properties. The rate of liquid removal is calculated for a set of values of the el...

متن کامل

Rigidity percolation in particle-laden foams.

We study the viscoelastic behavior of aqueous foam mixed with solid noncolloidal particles. We show that adding a tiny amount of grains can enhance the elastic and loss shear moduli by more than 1 order of magnitude. The scaling of these moduli with solid volume fraction is in qualitative agreement with that predicted by an effective-medium rigidity percolation model. We present a simple model,...

متن کامل

Rheological Response and Validity of Viscoelastic Model Through Propagation of Harmonic Wave in Non-Homogeneous Viscoelastic Rods

This study is concerned to check the validity and applicability of a five parameter viscoelastic model for harmonic wave propagating in the non-homogeneous viscoelastic rods of varying density. The constitutive relation for five parameter model is first developed and validity of these relations is checked. The non-homogeneous viscoelastic rods are assumed to be initially unstressed and at rest....

متن کامل

Thermal Conductivity and Viscoelastic Properties of UV-curable Urethane Acrylate Reinforced with Modified Al2O3 Nanoparticles

In this study, UV-curable urethane acrylate UA synthesized and then characterized by FTIR and HNMR. For better dispersion of nanoparticles in polymeric matrix, nano Al2O3 was modified by silane coupling agent and then its nanocomposites were prepared. The characteristics of synthesized nanocomposites were analyzed by TGA, DMA and infrared thermography. The results signify that adding nano Al2O3...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 71 3 Pt 1  شماره 

صفحات  -

تاریخ انتشار 2005